УДК 663.443

ОПТИМИЗАЦИЯ ВЫХОДА ЭКСТРАКТА ПРИ ПОЛУЧЕНИИ ПИВНОГО СУСЛА

Шабурова Г.В.

В работе приведено экспериментальное и математическое обоснование выхода экстракта в зависимости от количества применяемого экструдированного ячменя взамен части ячменного солода при приготовлении пивного сусла. Установлено, что использование экструдированного ячменя в качестве замены части ячменного солода в количестве 25% позволяет повысить выход экстракта на 2,8% при получении пивного сусла классическим настойным способом затирания с начальной температурой 40°C.

Ключевые слова: пивоварение, экструдированное зерновое сырье, математическое планирование, затирание, экстракт, пивное сусло.

Введение

Пиво является популярной алкогольной продукцией, приготовленной путем сбраживания пивного сусла, включающего пивоваренный солод, хмель, воду. Возможна замена части солода на несоложеные зернопродукты. Внесение в сусло нетрадиционных добавок, содержащих, в основном, углеводы и азотсодержащие соединения, изменяет баланс питательных веществ и, зачастую, повышает выход сусла.

Традиционная технология пива базируется на использовании ячменного пивоваренного солода и несоложеных зернопродуктов — ячменя, крупы рисовой, кукурузной, пшеницы, крупки пшеничной дробленой [1]. Рациональное использование солода, снижение себестоимости продукции, расширение товарного ассортимента, следовательно, повышение конкурентоспособности предприятия, предполагает замену части солода на несоложеные материалы.

Основополагающим фактором, влияющим на формирование качества пива, является применяемое сырье и параметры технологического процесса. В частности, вкус пива, являющийся важнейшей характеристикой напитка, зависит от химического состава сырья, вносимых добавок, пивного сусла, используемого штамма дрожжей, условий процесса ферментации.

В соответствии с требованием межгосударственного стандарта на пиво (ГОСТ 31711-2012), замена солода на зернопродукты возможна в количестве не более 20 % к массе зернопродуктов. Тем не менее, исследователями изучена возможность получения пивного сусла и пива с содержанием 30, 40 и 50% необезжиренной кукурузы и применением фермента Амилоцитазы Гх с вкусовыми качествами, соответствующими нормативным документам, и повышенным содержанием этилового спирта [2]. Экономические расчеты подтверждают снижение на 8 % стоимости пива с применением 30 % кукурузной крупки в сравнение с традиционным пивом

из солода [2]. Использование несоложеного ячменя до 50 % к массе зернопродуктов предполагает применение ферментных препаратов при затирании с целью оптимизации состава пивного сусла. Известны технологии пива с заменой солода на 40 % несоложеного ячменя и на 10 % свежепроросшего солода.

Эффективное применение нетрадиционного зернового сырья в технологии пива предполагает предварительную модификацию свойств основных зерновых биополимеров. Установлена значительная деструкция крахмала в экструдированном ячмене [3], модификация белкового комплекса экструдированного ячменя, способствующая повышению уровня растворимых фракций белка и понижению количества запасных белков [4]. Выявлено, что экструдированный ячмень характеризуется повышенной экстрактивностью и высоким содержанием аминного азота, что обусловливает интенсификацию процесса брожения [5].

Цель работы – разработка режима затирания смеси ячменного солода и экструдированного ячменя для повышения выхода экстракта пивного сусла.

Объекты и методы исследований

Пивное сусло получали настойным способом с различной дозировкой экструдированного ячменя и при разной начальной температуре затирания.

Результаты и их обсуждение

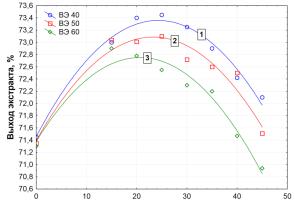
В таблице 1 приведены результаты исследования влияния доли экструдированного ячменя к массе зернопродуктов на выход экстракта при различной начальной температуре затирания.

Установлено, что процесс затирания образцов с заменой солода на экструдированный ячмень в количестве от 15 до 30 % при всех температурных режимах характеризуется более глубоким гидролизом биополимеров в сравнении с контрольным об-

Таблица 1 — Выход экстракта и продолжительность осахаривания крахмала при получении пивного сусла с применением экструдированного ячменя

Доля экструдированного ячменя к массе зернопродуктов, %	Выход экстракта	
	%	% к контролю
Начальная температура затирания 40°C		
0 (контроль)	71,45	100
15	73	102,17
20	73,4	102,73
25	73,45	102,8
30	73,25	102,52
35	72,9	102,03
40	72,42	101,36
45	72,1	100,91
Начальная температура затирания 50°C		
0 (контроль)	71,35	100
15	73,04	102,37
20	73,01	102,33
25	73,1	102,45
30	72,72	101,92
35	72,6	101,75
40	72,5	101,61
45	71,51	100,22
Начальная температура затирания 60°C		
0 (контроль)	71,3	100
15	72,9	102,24
20	72,78	102,08
25	72,55	101,75
30	72,3	101,4
35	72,2	101,26
40	71,47	100,24
45	70,94	99,5

разцом, о чем свидетельствует повышение выхода экстракта (рис. 1).


Регрессионный анализ выхода экстракта в зависимости от массовой доли экструдированного ячменя (а, %) при различной начальной температуре затирания позволил получить следующие уравнения:

$$B\Theta_{40} = 71,4570195 + 0,156647278a - 0,00322601a^2$$
(1)

$$B\Theta_{50} = 71,3915147 + 0,145521173a - 0,00312308a^{2}$$
(2)

$$B\Theta_{60} = 71,3779967 + 0,132868311a - 0,00321233a^2$$

Анализ уравнений свидетельствует об оптимальной начальной температуре затирания зерно-

Доля экструдированного ячменя в массе продукта, % Рис. 1. Зависимость выхода экстракта от массовой доли экструдированного ячменя при различной начальной температуре затирания: $1-40^{\circ}\mathrm{C};\ 2-50^{\circ}\mathrm{C};\ 3-60^{\circ}\mathrm{C}$

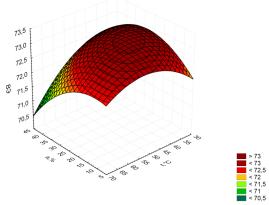


Рис. 2. Зависимость выхода экстракта (ВЭ, %) от доли экструдированного ячменя к массе зернопродуктов (а, %) и начальной температуры затирания зернопродуктов $(t, {}^{\circ}C)$

продуктов 40°C. Уравнения позволяют прогнозировать значение зависимой переменной – выхода экстракта.

Полученные экспериментальные данные были использованы для получения математических моделей с целью анализа процесса приготовления пивного сусла с высоким выходом экстрактивных веществ.

Критериями для оценки эффективности влияния экструдата ячменя являлись выход экстракта (ВЭ). В качестве факторов, влияющих на выход экстракта, выбраны: а — дозировка экструдата ячменя и t — начальная температура затирания. Эксперимент реализован с помощью двухфакторного композиционного ротатабельного плана. В результате получено регрессионное уравнение (4), достоверно описывающее зависимость выхода экстракта пивного сусла от исследуемых факторов и построена соответствующая поверхность отклика (рис.2).

$$B\Theta = 67,60398 + 0,1391789a -$$

$$-0,001625a^{2} + 0,179393t -$$

$$-0,001625t^{2} - 0,0015a \cdot t$$
(4)

R=0,99; R2=0,98; уровень значимости p=0,001

Анализ полученных аналитических и графических зависимостей позволил сделать вывод, что зона оптимальной доли экструдированного ячменя к массе зернопродуктов составляет от 15 до 30%, при этом достигается выход экстракта 73,00—73,45% при начальной температуре затирания от 38 до 52 °C.

С учетом этих данных, а также теоретических основ процесса приготовления сусла, эффективной начальной температурой затирания следует считать температуру 40° C.

Выводы

Таким образом, на основании полученных результатов исследований определена оптимальная дозировка экструдированного ячменя при затирании с ячменным солодом с целью получения пивного сусла с высоким выходом экстракта. Установлено, что использование экструдированного ячменя в качестве замены части ячменного солода в количестве 25% позволяет повысить выход экстракта на 2,8 % при получении пивного сусла классическим настойным способом затирания с начальной температурой 40°C.

Список литературы

- [1] Хорунжина С.И. Биохимические и физико-химические основы технологии солода и пива. М.: Колос, 1999. 312 с.
- [2] Sendra J.M., Tobov, Pinaga F., Izquierdo L., Carbonell S.V. Evalution of the effects of yeast strain and fermentation conditions on the volatile concentration profiles of pilot plant lager beers // Monatsschr. Brauwiss. 1994. № 10. P. 316–321.
- [3] Воронина П.К., Курочкин А.А. Формирование качества пива в процессе сбраживания пивного сусла с использованием экструдата ячменя // Известия Самарской государственной академии. 2012. № 4. С. 100–103.
- [4] Шабурова Г.В., Петросова Е.В., Шленская Т.В., Курочкин А.А. Экструдированный ячмень как компонент функциональных пищевых продуктов // Пищевая промышленность. 2012. № 10. С. 44–45
- [5] Воронина П.К. Разработка технологии и товароведная характеристика пива с экструдатом ячменя // Известия Самарской государственной сельскохозяйственной академии. 2013. № 4. С. 108–113.

OPTIMIZATION OF THE EXTRACT WITH OBTAINING BEER WORT

Shaburova G.V.

The paper presents an experimental and mathematical justification for the yield of the extract depending on the amount of extruded barley used instead of a part of barley malt in the preparation of beer wort. It was found that the use of extruded barley as a replacement for a part of barley malt in an amount of 25% can increase the yield of the extract by 2.8% in the preparation of beer wort by the classical method of mashing with an initial temperature of 40°C.

Keywords: brewing, extruded grain raw materials, mathematical planning, mashing, extract, beer wort.

References

- [1] Khorunzhina S. I. Biokhimicheskie i fiziko-khimicheskie osnovy tekhnologii soloda i piva [Biochemical and physico-chemical bases of technology of malt and beer]. M.: Kolos, 1999. 312 p.
- [2] Sendra J.M., Tobov, Pinaga F., Izquierdo L., Carbonell S.V. Evalution of the effects of yeast strain and fermentation conditions on the volatile concentration profiles of pilot plant lager beers // Monatsschr. Brauwiss. 1994. No.10. P. 316-321.
- [3] Voronina P.K., Kurochkin A.A. Formirovanie kachestva piva v protsesse sbrazhivaniya pivnogo susla s ispol'zovaniem ekstrudata yachmenya [The Formation of the beer quality in the process of fermentation of beer wort with the use of extrudate] // Izvestiya Samarskoi gosudarstvennoi akademii. 2012. No. 4. P.100-103.
- [4] Shaburova G.V., Petrosova E.V., Shlenskaya T.V., Kurochkin A.A. Ekstrudirovannyi yachmen' kak komponent funktsional'nykh pishchevykh produktov [Extruded barley as a component of functional food products] // Pishchevaya promyshlennost'. 2012. No. 10. P. 44-45
- [5] Voronina P.K. Razrabotka tekhnologii i tovarovednaya kharakteristika piva s ekstrudatom yachmenya [Development of technology and commodity characteristics of beer with barley extrudate] // Izvestiya Samarskoi gosudarstvennoi sel'skokhozyaistvennoi akademii. 2013. No. 4. P. 108-113.